Heliophysics Events Knowledgebase Coverage Registry (HCR)
Observation Details
Overview Where Groups: Mode, FOV, # spectra in map Data Links
2024-02-20 01:06:04-01:22:12
HOP 412 N-S 14/20
Synoptic SOT Latitudinal Scans (updated version of HOP79)
x,y:-21",313"
Max FOV:60"x129"
Target:Central meridian
Nearby Events
6302A Continuum Intensity60"x129"189 spectra
6302A Longitudinal Flux Density60"x129"189 spectra
6302A Transverse Flux Density60"x129"189 spectra
6302A Velocity 6301.5A60"x129"189 spectra

Level 1 Summary
Level 2 Summary
Level 1 Monthly
Level 2 Monthly
SP Cubes 2 MB
SOTSP: HOP 412 N-S 14/20
2024-02-20T01:06:04 to 2024-02-20T01:22:12
Science Goal: Synoptic SOT Latitudinal Scans (updated version of HOP79)
Program: Normal map 30 arcsec, Shorter Irradiance: DO NOT MODIFY!
Target: Central meridian
xcen=-21 ycen=313
Instrument: SOTSP
HOP/JOP: 412
Description: Main Objective: To study how small-scale magnetic flux and solar irradiance varies over the sunspot cycle Scientific Justification: The total solar irradiance varies by about 0.1% over the course of the solar cycle, primarily due to the influence of magnetic structures such as sunspots and faculae on the photospheric spectral irradiance. Short-term irradiance variation (on the scale of days-to-months) is well understood to be due to the balance of sunspots and facular areas as they cross the disk. However on the decadal scale of the solar cycle, questions remain as to why the irradiance variation can lead and/or lag the active region count over the course of the cycle. Explanations ranging from changes inthe solar diameter in response to magnetic flux storage in the convection zone to changes in the surface area of the photosphere due to F-mode modulation have been put forward. We propose to observe a north-to-south latitudinal strip with SOT-SP on a regular basis to better understand the variation of irradiance with rising flux levels in the photosphere. These observations have the potential to reveal new and important aspects of the relation between solar irradiance and magnetic flux emergence over the solar cycle when compared with TSI measurement satellites such as TSIS-1 and TSIS-2.

Main Objective: To study how small-scale magnetic flux and solar irradiance varies over the sunspot cycle Scientific Justification: The total solar irradiance varies by about 0.1% over the course of the solar cycle, primarily due to the influence of magnetic structures such as sunspots and faculae on the photospheric spectral irradiance. Short-term irradiance variation (on the scale of days-to-months) is well understood to be due to the balance of sunspots and facular areas as they cross the disk. However on the decadal scale of the solar cycle, questions remain as to why the irradiance variation can lead and/or lag the active region count over the course of the cycle. Explanations ranging from changes inthe solar diameter in response to magnetic flux storage in the convection zone to changes in the surface area of the photosphere due to F-mode modulation have been put forward. We propose to observe a north-to-south latitudinal strip with SOT-SP on a regular basis to better understand the variation of irradiance with rising flux levels in the photosphere. These observations have the potential to reveal new and important aspects of the relation between solar irradiance and magnetic flux emergence over the solar cycle when compared with TSI measurement satellites such as TSIS-1 and TSIS-2.

Annotations:
Hits: 40
Chief Observer
Cruz (RCO)
Related Links
Cites: HOP 412 N-S 14/20     
Timeline: gif use
See also
Datasets
Get All Data
saaIntervals hiIntervals

wavelength: 6302A Continuum Intensity cadence: 0 min fov: 60,129 images: 189 JavaScript Landing Page
wavelength: 6302A Velocity 6301.5A cadence: 0 min fov: 60,129 images: 189 JavaScript Landing Page
wavelength: 6302A Transverse Flux Density cadence: 0 min fov: 60,129 images: 189 JavaScript Landing Page
wavelength: 6302A Longitudinal Flux Density cadence: 0 min fov: 60,129 images: 189 JavaScript Landing Page
Time Series (SP Datacubes)